Termomodernizacja istniejących budynków dotyczy ich dostosowania do nowych wymagań (obowiązujących od 1 stycznia 2021 r.) w zakresie oszczędności energii i ochrony cieplno-wilgotnościowej. Ponadto stanowi zbiór zabiegów mających na celu wyeliminowanie lub znaczne ograniczenie strat ciepła w istniejącym budynku. Jest jednym z elementów modernizacji budynku, który przynosi korzyści finansowe na pokrycie kosztów innych działań.
Działania energooszczędne w zakresie dostosowania budynków do standardu „budynku o niskim zużyciu energii” można podzielić na trzy podstawowe grupy:
- redukcja strat ciepła przez przegrody,
- redukcja strat oraz poprawa sprawności systemów instalacyjnych,
- prace projektowo-wykonawcze lub modernizacyjne skupiające się na źródle ciepła z uwzględnieniem OZE.
Docieplenie elementów obudowy budynków w świetle wymagań obowiązujących od 1 stycznia 2021 r.
Aby ilość energii cieplnej potrzebnej do użytkowania budynku zgodnie z jego przeznaczeniem można było utrzymać na racjonalnie niskim poziomie, przewidziano dwie metody pozwalające spełnić wymaganie w nowo projektowanych budynkach:
- pierwsza polega na takim zaprojektowaniu przegród w budynku, aby wartości współczynników przenikania ciepła U/Uc [W/(m2·K)] przegród zewnętrznych, okien, drzwi oraz technika instalacyjna odpowiadały wymaganiom izolacyjności cieplnej – kryterium w zakresie ochrony cieplnej: Uc ≤ Uc(max),
- druga to zaprojektowanie budynku pod kątem zapotrzebowania na nieodnawialną energię pierwotną na jednostkę powierzchni pomieszczeń o regulowanej temperaturze powietrza w budynku, lokalu mieszkalnym lub części budynku stanowiącej samodzielną całość techniczno-użytkową – EP [kWh/(m2·rok)] – kryterium w zakresie oszczędności energii: EP ≤ EP(max).
Wartości maksymalne współczynników Uc(max) dla poszczególnych przegród budynku oraz wskaźników EP(max) dla budynków określono w rozporządzeniu [1].
Wymagania minimalne, o których mowa w ust. 1 rozporządzenia [1], uznaje się za spełnione dla budynku podlegającego termomodernizacji, jeżeli przegrody oraz wyposażenie techniczne budynku podlegające przebudowie odpowiadają przynajmniej wymaganiom izolacyjności cieplnej określonym w załączniku 2 do rozporządzenia [1]. Ponadto należy pamiętać, że budynek powinien być zaprojektowany i wykonany w taki sposób, aby ograniczyć ryzyko przegrzewania budynku w okresie letnim (dotyczy przegród przezroczystych, tj. stolarki okiennej). W trakcie projektowania i wykonywania docieplenia przegród zewnętrznych budynku należy pamiętać o wyeliminowaniu zjawiska kondensacji powierzchniowej (ryzyko rozwoju pleśni i grzybów pleśniowych) oraz kondensacji międzywarstwowej.
Docieplenie ścian zewnętrznych budynków
W przypadku ścian zewnętrznych budynków prefabrykowanych (np. wielka płyta) oraz wznoszonych w technologii tradycyjnej murowanej, aby uzyskać odpowiednią izolacyjność cieplną w postaci współczynnika przenikania ciepła U [W/(m2·K)], należy dobrać odpowiednią grubość izolacji cieplnej.
Do podstawowych metod ocieplenia ścian zewnętrznych można zaliczyć:
- metodę ciężką mokrą, która polega na oklejeniu całych powierzchni ścian najczęściej płytami styropianowymi, zawieszeniu na stalowych bolcach siatek konstrukcyjnych z prętów stalowych i wykonaniu wyprawy zewnętrznej z trójwarstwowego tynku cementowo-wapiennego na siatce stalowej podtynkowej,
- metodę lekką mokrą, polegającą na wykonaniu ocieplenia najczęściej ze styropianu, a następnie pokryciu go powłoką zewnętrzną, w skład której z reguły wchodzi warstwa zbrojona tkaniną szklaną oraz cienkowarstwowa wyprawa tynkarska lub okładzina ceramiczna; systemy oparte na tej technologii można podzielić na kilka podstawowych typów, opisanych szczegółowo w [2],
- metodę lekką suchą, która opiera się na wykonywaniu robót budowlanych bez prac mokrych; wykonywanie ocieplenia polega na przymocowaniu do ścian budynku rusztu drewnianego lub metalowego, ułożeniu między elementami rusztu materiału termoizolacyjnego i zamocowaniu gotowych elementów elewacyjnych.
Technologia bezspoinowego systemu ocieplenia (ETICS) ścian zewnętrznych budynku polega na przymocowaniu do ściany systemu warstwowego, składającego się z materiału termoizolacyjnego oraz warstwy zbrojonej i wyprawy tynkarskiej. System mocowany jest do ściany za pomocą zaprawy klejącej i dodatkowo łącznikami mechanicznymi. Zasadniczą funkcję w tym systemie pełni materiał termoizolacyjny, który powinien charakteryzować się następującymi cechami [2]:
- niską wartością współczynnika przewodzenia ciepła λ ≤ 0,04 0,04 W/(m·K),
- niską wilgotnością i nasiąkliwością zarówno w trakcie wbudowania, jak i użytkowania,
- odpowiednią wytrzymałością mechaniczną,
- odpornością na działanie ognia: niepalnością, trudnozapalnością – odpowiednią klasą reakcji na ogień,
- odpornością na wpływy biologiczne,
- odpornością na działanie materiałów, z którymi będzie się stykać po wbudowaniu,
- brakiem trwałego zapachu i brakiem szkodliwego oddziaływania na ludzi i zwierzęta,
- znaczną trwałością w zmiennych warunkach eksploatacyjnych,
- małym obciążeniem środowiska naturalnego podczas produkcji i utylizacji materiałów rozbiórkowych.
W systemach ETICS jako izolację termiczną stosuje się najczęściej fasadowe płyty styropianowe (EPS), płyty ze styropianu grafitowego (szarego), fasadowe płyty z wełny mineralnej lub płyty z pianki poliuretanowej oraz materiały uzupełniające, przeznaczone do ocieplenia cokołowej i podziemnej części ściany w postaci płyt polistyrenowych o zmniejszonej nasiąkliwości (TABELA 1).
Bardzo istotne jest poprawne ułożenie płyt z materiałów termoizolacyjnych w celu minimalizacji wpływu nieszczelności w warstwie izolacji cieplnej. Na etapie projektowania zakłada się poziom nieszczelności (ΔU’’) oraz dodatek uwzględniający wpływ nieszczelności w warstwie izolacji cieplnej (ΔUg) na wartość współczynnika przenikania ciepła Uc wg normy PN-EN ISO 6946:2008 [3].
W ścianach dwuwarstwowych stosuje się łączniki mechaniczne wykonane z tworzyw sztucznych, natomiast w przypadku ścian trójwarstwowych i szczelinowych wykonane ze stali lub stali nierdzewnej.
Procedurę uwzględniania wpływu łączników mechanicznych (ΔUf) na wartość współczynnika przenikania ciepła Uc oblicza się wg normy PN-EN ISO 6946:2008 [3].
Poprawne ułożenie, mocowanie i osłonięcie materiału termoizolacyjnego w trakcie prac związanych z dociepleniem ścian zewnętrznych gwarantuje wysoką jakość prac termomodernizacyjnych. Jednak przy ociepleniu ścian zewnętrznych często można zaobserwować wiele dokuczliwych problemów będących skutkiem zjawiska „przegrzewania”, typowego dla szarego styropianu.
Podczas wykonywania ocieplenia mogą występować m.in.: efekt odpadania płyt od fasady na skutek przegrzania, efekt skurczu płyt styropianowych (powstawanie szczelin powietrznych w warstwie izolacji termicznej, tj. liniowych mostków cieplnych powodujących występowanie dodatkowych strat ciepła), naruszenie struktury płyt styropianowych (liniowe wytopienia). Szczegółowe analizy w tym zakresie opisano m.in. w pracach [4–6].
Poprawne wykonanie ocieplenia przegród zewnętrznych wymaga zastosowania materiałów o wysokiej jakości oraz stosowania wytycznych opisanych w projekcie ocieplenia.
Aby spełnić podstawowe wymaganie w zakresie ochrony cieplnej: Uc ≤ Uc(max) = 0,20 W/(m2·K) – dla ścian zewnętrznych od 1.01.2021 r., należy dobrać odpowiednią grubość materiału termoizolacyjnego o określonej wartości współczynnika przewodzenia ciepła λ [W/(m·K)].
W TABELI 2 i TABELI 3 zestawiono przykładowe rozwiązania materiałowe ocieplenia ścian zewnętrznych budynków prefabrykowanych i wykonanych w technologii tradycyjnej murowanej. Szczegółowe wyniki obliczeń w zakresie doboru grubości materiału termoizolacyjnego w systemach dociepleń ścian zewnętrznych przedstawiono w pracy [7].
Należy podkreślić, że w wielu przypadkach istniejących budynków mieszkalnych lub użyteczności publicznej wykonywanie dodatkowego ocieplenia na już istniejącym stało się bardzo ważnym zagadnieniem remontowym (termomodernizacyjnym). Dlatego też Instytut Techniki Budowlanej, a także inne organizacje zrzeszające producentów ociepleń starają się szczegółowo zapoznać z problematyką tego typu realizacji.
Zasadne staje się opracowanie szczegółowych wytycznych realizacji ociepleń wykonywanych na ociepleniach już istniejących z uwzględnieniem wymagań obowiązujących od 1 stycznia 2021 r. oraz specyfiki modernizowanych budynków. Wybrane aspekty w tym zakresie opisano m.in. w pracach [7, 8].
Podsumowanie i wnioski
Dobór materiału termoizolacyjnego (rodzaj oraz grubość) do ocieplenia ścian zewnętrznych nie powinien być przypadkowy, lecz oparty na podstawie obliczeń parametrów fizykalnych (cieplno-wilgotnościowych) przegród i ich złączy. Przed przystąpieniem do prac projektowych i wykonawczych w tym zakresie należy miarodajnie określić stan techniczny i cieplny istniejącej przegrody (w wielu przypadkach już ocieplonej). Istotnym aspektem jest także poprawne wykonanie prac dociepleniowych: odpowiednie ułożenie, mocowanie i osłonięcie materiału do izolacji cieplnej oraz wykonanie warstw wykończeniowych.
Jakość cieplna elementów obudowy budynku (w tym ścian zewnętrznych) generuje wartości wskaźników zapotrzebowania budynku na energię użytkową EU [kWh/(m2·rok)], na energię końcową EK [kWh/(m2·rok)] oraz na nieodnawialną energię pierwotną EP [kWh/(m2·rok)].
Literatura
1. Rozporządzenie Ministra Infrastruktury i Budownictwa z dnia 14 listopada 2017 r. zmieniające rozporządzenie w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (DzU z 2017 r. poz. 2285).
2. M. Gaczek, J. Jasiczak, M. Kuiński, M. Siewczyńska, „Izolacyjność termiczna i nośność murowanych ścian zewnętrznych. Rozwiązania i przykłady obliczeń”, Wydawnictwo Politechniki Poznańskiej, Poznań 2011.
3. PN-EN ISO 6946:2008, „Komponenty budowlane i elementy budynku. Opór cieplny i współczynnik przenikania ciepła. Metoda obliczania”.
4. P. Krause, „Defekty termiczne ścian pełnych z ociepleniem ETICS”, „Materiały Budowlane” 9/2018, s. 66–68.
5. K. Pawłowski, „Ocieplenie ścian zewnętrznych płytami styropianowymi – wybrane aspekty wykonawcze”, „IZOLACJE” 3/2020, s. 35–40.
6. K. Pawłowski, „Czynniki decydujące o jakości wykonania izolacji z płyt styropianowych”, „IZOLACJE” 9/2019, s. 28–31.
7. K. Pawłowski, „Termomodernizacja budynków – ocieplenie i docieplenie elementów obudowy budynków”, numer specjalny „IZOLACJE” 2/2020, s. 20–34.
8. K. Pawłowski, „Termomodernizacja budynków z uwzględnieniem wymagań cieplno-wilgotnościowych od 1 stycznia 2021 roku”, „IZOLACJE” 2/2020, s. 19–30.
Autor: dr inż. Krzysztof Pawłowski